
Back to the Future: C9nsistency-based Trajectory Tracking

James Kurien

Computational Sciences Division
NASA Ames Research Center, MS 269-3

Moffett Field, CA 94035
jkurien_arc.nasa.gov

P. Pandurang Nayak
RIACS

NASA Ames Research Center, MS 269-2

Moffett Field, CA 94035
nayak'._cs.stanford.edu

Abstract

Given a model of a physicalprocessand a sequence
ofcommands and observationsreceivedovertime,the
task of an autonomous controlleristo determinethe

likelystatesofthe processand the actionsrequiredto
move the processtoa desiredconfiguration.We intro-
duce a representationand algorithmsforincrementally
generatingapproximate beliefstatesfora restricted

but relevantclassof partiallyobservableMarkov de-
cisionprocesseswith very largestatespaces.The al-
gorithmpresentedincrementallygenerates,ratherthan
revises,an approximatebeliefstateatany pointby ab-
stractingand summarizing segments ofthe likelytra-
jectoriesof the process.This enablesapplicationsto
efficientlymaintain a partialbeliefstatewhen itre-
mains consistentwith observationsand revisitpastas-
sumptions about the process'evolutionwhen thebelief
stateisruledout. The system presentedhas been im-
plemented and resultson examples from thedomain of
spacecraftcontrolarepresented.

Introduction

Given a model of a physical system and a sequence of
commands and observations received over time, the task
of an autonomous controller is to determine the likely
states of the system and the actions required to move

the system to a desired configuration. Focusing on the
state identification question, a belie/state is a proba-
bility distribution over the possible states of a system.
If the system has the Markov property, then the influ-
ence of a new command and observation upon the belief
state can be integrated via Bayes' rule. The updated
belief state is a suflicient statistic, capturing within a
single distribution all knowledge about the current state
of the system contained within a history of commands
and observations. The controller then makes use of the

updated belief state in selecting an action.

Example 1 Consider the spacecraft propulsion sub-
system of Figure 1. The helium tank pressurizes the
two propellant tanks. When a propellant path to either
engine is open, the pressurized tanks force fuel and oxi-
dizer into the engine, producing thrust. Not shown are
valve drivers that control the the latch valves and a set

of flow,pressure and accelerationsensorsthat provide

Engines .J_l._

--

Oxidizer tank

Figure 1: Propulsion system schematic.

partial observability. A model of a system specifies the
modes of each component (e.g. a valve may be open,
closed, stuck closed, and so on), behavior in each mode

(e.g. a closed valve prevents flow), mode transitions
(valves usually open when commanded, but stick closed
with probability p) and connections between compo-
nents (fuel flow into an engine is equal to the flow out
of the attached fuel valve).

Consider the problem of determining the likelihood
of the possible states of this subsystem. Unfortunately,
computing a belief state in general requires enumera-
tion of the state space. The propulsion subsystem has
38 components with an average of 3 states each. More
complete spacecraft models capture 150 or more com-
ponents averaging 4 states, yielding a state space of
23°° or more and making complete enumeration is im-
plausible. One alternative is to track an approxima-
tion whose computation does not require enumeration
of the state space, ideally enumerating only the most
likely portion of the belief state at each point in time.
Livingstone (Williams & Nayak 1996) tracks n approx-
imately most likely states of the system by transition-
ing a small number of tracked states by the transitions
that are most likely, given only the current observa-
tions. This approximation is extremely efficient and
well suited to the problem of tracking the internal state
of a machine, where the likelihood of the nominal or
expected transition dominates and immediate observa-
tions often rule out the nominal trajectory when a fail-
ure occurs. The task then becomes one of diagnoeing
the most likely system transition, chosen from combi-

I

i " ,,11 11¢.. n Ni, { llJnll_
v _ _" _,_ _.1_ _r_,_m

vI)[l V,alv_ql _.
'_ 0 val*=

failctl C5_¢,d Lh_rea
|

Tim_ 0 I 2 3

Figure 2: Evolution of a Valve Driver Unit and Valves

nations of component transitions, that would be con-
sistent with the unexpected observations. Using this
technique, Livingstone is able to perform approximate
state identification and reconfiguration of systems with
hundreds of state variables. It has been applied to the
control of a number of systems within NASA and is an

integral part of the Remote Agent architecture demon-
strated in-flight on the Deep Space 1 spacecraft in 1999
(Bernard et al. 1998). Unfortunately, the true trajec-
tory may not be among the most likely given only the
current observations. Consider the following example.

Example 2 Figure 2 illustrates a small system and two
possible trajectories. The pump pressurizes the system
and the valves, if open, allow a fluid flow. The valve

driver unit commands the two valves in parallel via the
data bus represented by dashed lines. The graph to the
right represents the probability of two possible trajec-
tories. The filled circles represent the true state of the
system. At time 0 the VDU is off, the valves are closed
and the pump is off. At time 0 the VDU is commanded

on. For the sake of illustration, consider an approxi-
mate belief state of size 1. The state wherein the VDU
is on is placed into the belief state. The true state

wherein the VDU is failed is discarded. At time 1, the
VDU is commanded to open its valves. Since the only
state in the belief state assumes the VDU is on, the sin-
gle state in the updated belief state has the VDU on and
all valves open. In the true, untracked state the valves
are closed, as they never received a command. At time

2, the pump is turned on. Pressure is observed at the
outlet of the pump, while no pressure is observed down-
stream of the valves. Failure of the pump alone has zero
probability, given the observations. Failure of the VDU
in the current time step has no effect on the valves.
Thus, the most likely next state consistent with the

observationsrequiresthat allvalvesspontaneously and

independently shut. Regardless ofthe number ofvalves
and the unlikelinessof spontaneously closure,thistran-

sitionmust be taken ifitexists.Ifitdoes not exist,the

beliefstate approximation becomes empty.

In general,as the true stateevolves,the trackedsub-

set of statesmay need to undergo arbitrarilyunlikely
transitionsin order to remain consistentwith the ob-

servations.While only one trajectoryistrackedinthis
example, for any fractionof the trajectoriesthat ate

tracked,an example can be constructedwherein the ac-

tualstateofthe system fallsoutsidethe trackedfraction

and the error in the approximation may become arbi-

r;wily larg,. We t)r()tJ-_(' aa ,dtrrmttive to (:omitting
r,o a subset of the current belief state or maintaining
an approxhnation of the entire belief state. We propose
to maintain the information necessary to begin incre-
mentally generating the current belief state in best-first

order at any point in time. Since we do not update the
entire belief state, we do not have a sufficient statistic,

so a history must be maintained. We introduce a vari-
able to represent every state variable, command and
observation at every point in time and an algorithm for
incrementally generating the exact belief state at any
point. Requiring a set of variables that grows linearly
with the history of the system seems impractical except
for short duration tasks. We apply two approximations

motivated by our experience modeling physical systems
for Livingstone. First we introduce variables only when

close interaction requires. This approximation is con-
servative in that it may admit impossible trajectories,

which are likely to be eliminated with further observa-
tions, but it does not eliminate any possible trajecto-
ries. We then summarize possible trajectory segments
that are consistent with extended periods of system evo-
lution. We are then able to generate an approximate
belief state using a constant number of variables. The
variables represent an exact model of system evolution
over the recent past, an approximate model over the
intermediate past, and a gross summarization over the
more distant past. This allows assignment of the most
likely past transitions to be revisited as new observa-
tions become available. The fewest variables, and thus

the least flexibility, are allocated to segments of the sys-

tem trajectory that have remained consistent with the
system's observed evolution for the longest time.

In the following sections of the paper, we give the
complete history representation followed by a simple,

exact, and intractable algorithm for enumerating the
belief state. We introduce several optimizations and

approximations in order to gain tractability while main-
taining the ability to revise assesments of past sys-
tem evolution. Finally we describe the results of run-

ning the algorithm on test scenarios developed applying
Livingstone and describe upcoming demonstrations of
the software on NASA spacecraft.

Transition Systems

We wish to represent the possible histories of a system
composed of non-deterministic, concurrent automata
given the commands issued to the automata and their
output. We create a structure that allows incremental,
best-first enumeration of all possible trajectories by ex-
tending the formalism of Livingstone. In order to com-
pactly represent the trajectories, we add a set of transi-
tion variables that represent the non-deterministic tran-
sitions each automaton may make at each time step.

Each assignment to a transition variable has a likeli-
hood representing the prior probability of the corre-

sponding non-deterministic transtion occurring. One
trajectory of the system is thus an assignment to each
transition variable, and given the appropriate indepe-

(h',w('ass.mptiotlS,the sotof trajectorwscanbe in-
crementallyenumeratedhl orderof likelihood.In or-
derto capturethefeasiblebehaviorsof theautomata,
weintroducea setof formulaeA4E describing the in-
put/output mapping of the automata in each state, and
a set of formulae ._'r for describing the feasible transi-
tions of the automata.

Definition 1 A transition system S is a tuple
(l'I, T, D, C, A4g, ,Mr), where

• II is a set of state variables representing :he state
of each automaton. Let n denote the number of au-

tomata and m denote the number of discrete, syn-
chronous time steps over which the state is to be
tracked. H then contains m x n variables, lit will de-
note the set of state variables representing the state
of the system at time step t. Each state variable y
ranges over a finite domain denoted 5(y). The vari-
able representing the assignment to y at time step t
is denoted yr.

• D is a finite set of dependent variables.

• C is a finite set of command variables.

• T is a set of transition variables. There is one tran-
sition variable for each state variable at each time

point, denoted rr,t. Each value in the domain of rv,t
is is assigned a probability.

• State st is an assignment to IItuTtuDtuCt

• ._r. is a propositional formula over lit and Dt that
specifies the feasible subset of the state space. A state
is feasible if it makes an assignment to HtuT)t that is
consistent with ,'V_r..

• .'_7" is a propositional formula lit, Dr, Ct, Tt and
Ht+_ that specifies the feasible sequences of states.
Specifically, ,_v is a conjunction of formulae of the
form:

¢t ^ (r_,t = r')_yt+l = y'

where et is a propositional formula over lit, Dt and

Ct, and r" E 5(r_.t).

Example 3 We introduce a transition system to model
a VDU and two valves. The variables corresponding to
the VDU consist of a state variable vdu representing the
mode (on, off, or failed), the transition variable ryes,
a command variable cmdin representing commands to
the VDU or its associated valves (on, off, open, close,
none), and a dependent variable cmdout representing
the command the VDU passes on to its valves (open,
close, or none). The set of feasible states of the VDU
is specified by the following formula

vdu = on =_ (cmdin -- open =_ cmdout = open)
A (crndin = close =_ cmdout = dose)
A ((cmdin # open A cmdin # dose)

=_ cmdout = none)
vdu -" off =_ cmdout = none
vdu = failed =_ emdout --- none

to_ether with formulae like (vdu # on)V (vdu
o17) v (vdu _ failed),.., that assert that variables have
unique values. The time step subscript is omitted, indi-
cating that all clauses refer to variables within the same

time stt,l) The va[w,s v i aml c2 e,wh hart, ;t _t,tte vari-
abte of domain (open, closed, or ._tuckelo._ed), a tran-
sition variable to, and a dependent variable flowvl of
domain (zero, nonzero). The feasible states of the vl
are specified by the formula below. The feasible states
of v2 are specified similarly.

vl = open ::_ " flowot = nonzero
ul = closed ::_ flowvt = zero
vl = failed => flow_l = zero

.M.r for r_a_, and rot is as follows, r,,..) is as r,,t.

7"odt_,t : nominal=>

vdut = off A cmdin, = on
vdut = off A cmdin _ on
vdut = on A cmdint = off
vdut -- on A cmdint 7£off
vduc= failed

r_,a_.t = fail::_vdut+l = failed

:=¢" T3dttt.+l : O_

= vdu,+l =of/
=_ vdu,+, = off
=_ vdut+t = on
::_ vdu_+t = failed

rvt,t = nominal_
vlt = closed A cmdoutt = open
vl_ = closed A crndoutt _ open
vlt = open A cmdout¢ = closed
vlt = open A cmdoutt _£ close
vlt = stuckclosed

rvx,t = st ick=:_v l,t + _ --- stuckclosed

=> vlt+t = open
=> vlt+t ----closed
=> vlt+t = closed
=:, vl_+t : open
=:, vl_+_ = stuckclosed

Infinitesimals

In general we must consider all trajectories when de-
termining the likelihoods, or even relative likelihoods,
of a set of states, as many unlikely trajectories may
contribute probability mass to the same outcome state.
The transition system representation will allow usto

enumerate the most likely trajectories of a system in
order. We would like to find a natural restriction on

the form of prior probabilities of transitions such that
there is a correspondence between the most likely tra-
jectories we axe able to identify and the most likely
states in which we axe interested. Our experience ap-

plying Livingstone was that an ad-hoc, order of magni-
tude probability scale was a sufficient representation for
two reasons. First, the internal behavior of a machine

is usually far less stochastic than its interaction with its
environment. There is an expected or nominal behavior
that a component will exhibit for a given state and in-
put, with failure modes one or more orders of magnitude
less likely. Second, precise estimates for these priors are
often either inaccessible or unknown. However, the rel-

ative plausibility of each failure mode during operation
can be elicited quite easily. In this work, we formalize
and capitalize on these characteristics of the priors by
making use of infinitesimals (Goldszmidt & Pearl 1992)
to model the relative likelihoods of failures.

An infinitesimal probability is represented by an in-
fintesimally small constant raised to an exponent re-
ferred to as the rank. The rank can be considered the
degree of unbelievability. Intuitively, one would not
consider a rank 2 infinitesimal believable unless all rank
0 and rank 1 possibilities had been eliminated. Com-
position of infinitesimals has many desirable properties.

If .l aod 0 are h.trlwndent events, th,,n

R,,,k(AB) = R,,,,k(.4) + R,,nk(B)

R,t,&(.4 V B) = rain(Rank(A), Rank(B))

Thus an outcome that can occur through multiple inde-
pendent events has rank i if one event has rank i amt the

remaining events, even if arbitrarily many, have ranks of
i or more. This property allows us to consider only the
most likely trajectories leading to a state: if a sequence

of events of rank i ends in state s;, then an arbitrary
number of higher rank (i.e. less likely) trajectories lead-

ing to sj will not change its rank. Similarly, if state sj
is reached by a trajectory of rank i, and no trajectory
of rank i or less reaches s_, then sj is more likely than
sk, even if an arbitrary number of unlikely trajectories
leading to s_ remain unconsidered. We frame our algo-
rithms in terms most likely trajectories, knowing that
there is a correct correspondence to most likely states
given the infinitesimal interpretation of the priors.

Trajectory Identification

Definition 2 A trajectory for S is a sequence of states
so,st,...sin such that for all t such that 0 < t < m st
is consistent with A4E and for all t such that 0 < t <

(m - 1) stUst+l is consistent with .A47-.

Consider the problem of determining the state of a
physical process modeled by a transition system S at
each point in a trajectory So... sin. The subset of the
dependent variables D whose assignment corresponds to
a measurement from the process will be referred to as
the observations, O. We are given an assignment for the
initial state, II0. In addition we are given assignments
to commands Ct and observations (gt for all 0 < t < m.
The task is to choose assignments to r_.t for all y and
t so as to ensure consistency with ,_r. and J_7- and
maximize the likelihood of the trajectory. That is to
say, given a starting state, a set of commands and a set
of observations, we must find the most likely sequence
of transitions such that each state is consistent with the
state model A4r_ and the transitions are consistent with
the transition model MT-. We define the likelihood of
the trajectory to be:

t=O y=l

This definition makes the assumption that the likeli-

hood of assignments to ry,t are independent of rz,t.

A Simple Tracking Algorithm

The transition-system formulation suggests an intuitive
procedure to begin enumerating the belief state at any
point. The transition system is initialized with fl4z:
and a copy of all variables, representing the initial state.
At time step t, we introduce a copy of A4E and a copy
of all variables, representing the next state of the sys-
tem, as well as a copy of .A4r representing the con-
straints between the current state and the next state.

We assign Ct and g)t+l according to how the system
was commanded and the observations that resulted.

Example 4 Below is :m ,xamph, trajectory-tracking
problem. The command is cr,,lin azl¢l the observations

are flow_t and [hrwu2. These variables are assigned
by the problem, as is the start state. The rv,t assign-
ments must be chosen. The remaining variables will

be constrained based upon these assignments. For all
ry,t we will assume Rank(ru.t = nominal) = 0 and
Rank(ry.t # nominal) = 1.

Variable t ='0 t = I t =2
vdu, o//
rua.,t

cmdint on open none
crndoutt

v I t closed
ru l .t

flowuLt zero zero zero

v2t closed
rv2,t

/lOWv2,t zero zero zero

Trajectories may be enumerated in order by enumer-

ating assignments to all ry,t in order of the sum of
the ranks, then testing for consistency with ,_v and
.M_:. Conflict-directed, best-first search, or CBFS

(Dressier & Struss 1992; de Kleer & Williams 1989;

Williams & Nayak 1996) greatly focuses this process by
using conflicts. A conflict that renders a candidate solu-

tion inconsistent is used to avoid generating any further
candidate solutions that contain the same conflict.

Example 5 Below are two solutions to the above prob-
lem, representing a single failure of rank 1 at time 1 and
a double failure of rank 2 at time 2, res

Variable
vdut

Tt, du,t

cmdint
cmdoutt
vlt
rVl,t

flowvt,t
v2t
Tu2,t

flow_,,,

t=O t=l
off failed
fail nominal

on open
none none

closed closed
nominal nominal
Zero Zero

closed closed
nominal nominal
zero zero

t=2

failed

none
_le

closed

Zero

closed

zero

Variable t = O t = l t = 2
vdut

rvd.,t "

cmdin,
crndout t
vlt
7"ul,t

flow_l,,
v2t

rv2,t

flow_2,,

of/
nominal
on

r_one

closed
nominal
zero

closed
nominal
ZerO

o71

nominal

open
open
closed
stick
zero
closed
stick
zero

on

_o71e

nofte

stuckclosed

Zero

stuckclosed

zero

While applying CBFS to the full transition system
exactly enumerates the most likely trajectories, and
thus states, in order, problem size is a significant is-
sue. Testing consistency of each candidate trajectory
requires propositions representing the possible assign-
ments to each variable at each time point. In addi-
tion, these propositions are constrained by a copy of

l,,IJ _t,w t _ 7

Y,.,B--- ... bill

Figure 3: Evolution before commanding the valves

I,,_) Now I •)_

[]I,_,,_,_.-... m_. ,',..,,_,,,,,...,1-.., -. I

pump1
Y..,--" ,,, FI I
Y,.,I "" ZL__I

Figure 4: Evolution upon commanding the valves

,_r and A4r_ at each time step. Let 11I [p denote
the number of propositions needed to represent each
possible value of each variable in II. If we wish to
track the system for m steps, checking a single tra-
jectory candidate becomes a consistency problem of

m x (l TIp + I II Ip + [C lp + ID Ip) propositions and
m x (] .Mr 1+1 .M= I) clauses. Given sufficient time,
m will outgrow the available computational resources.

Problem Size Reduction

In this section, we reduce the structure needed to rep-
resent the evolution of the system at a time point from
a complete copy of the system model to a small num-
ber of variables and clauses. Intuitively, when a com-
mand is issued to the system, only a small number of

components participate in transmitting that command
through the system or transitioning in response to the
command. Consider Figure 3. The squares represent
state variables, the lines sets of constraints from A47-.
As of time 7, the valves, pump and VDU have not been

commanded nor have they interacted with other compo-
nents by passing a command. If we did not detect a fail-
ure of any of these components, we represent the pos-

sibility that they remained idle or failed silently with a
single set of variables and constraints as illustrated. At
time 7 we command the valves on. We require variables
vls and v2s to represent the new states of the valves.
A47- suggests vdur, vlr and v2r will interact with vls

and v2s. These variables, along with necessary transi-
tion variables roau,r, r_t,r and, roz,r, are introduced to
the system with the appropriate clauses from A4-r. For

all other variables, the variable representing Yr is ade-
quate to represent Ys- Figure 4 illustrates this process.
In order to have a well-founded algorithm, we first we
place a natural restriction on .M-r that does not im-
pact correctness. Second we introduce an approxima-
tion that, importantly, does not rule out trajectories.
Instead, some trajectories that are not consistent with

past observations may be admitted, with the possibility
that future observations will eliminate them.

Restricting .Mr

We restrict .Mr as do Livingstone and Burton
(Williams & Nayak 1997): a component moves to a
failure state with equal probability from any state, and
except for failures a component is kept in its current
state by the idle command..Mr is limited to the forms:

(r_,t ---- 7"lailure) =¢" Yt+l "- !Jtailure

(d_.t = idle) A (r_,t = nominal) _ Yt+t = gt

(dy,t = C') ^ Ct ^ (ru.t = nominal) _ Yt.L = Y"

where ¢t is a propositional formula over 11tU79t, C" E

8(C_.t), nominal E 5(r_,t) and r/_it E 8(r_,t). Formu-
lae of the first form model failures while formulae of the

third form model nominal, commanded transitions. We
next preprocess ¢t by replacing references to "Dr with
an implicate _rt that involves only 1-It. Intuitively, we re-
place a formula on the command a component c receives
with a formula on the chain of components causing c to
receive the command. We expect that for the type of
clauses v_r contains, growth will be proportional to the
length of the component chain, l, which ranged from 1
to 5 in the spacecraft model of (Bernard et al. 1998).
Our initial experience supports this hypothesis. Non-
idle, non-failure clauses then take the following form,
which does not depend upon D.

(C_,t = C*) A rrt A (r_,t = nominal) =# Yt+l "- Y"

Intuitively, as far as .MT is concerned, we need only

introduce the variables of lit found in 7rt if C_,t _ idle.

Eliminating intermediate observations

A4_. remains, and requires introduction of all variables
in Ht and Dt in order to check consistency against Or.
We proceed by eliminating all variables Ot for values of
t sufficiently far in the past. That is to say, transition
choices are only constrained by consistency between the
trajectories they imply and recent observations. As
the system evolves, variables representing older obser-
vations, and the copies of .Mr that constrain them,
are discarded, or with relabeling, never introduced. For
the portions of the trajectory where .Mr. is not intro-
duced, we need only introduce the limited portion of
IIt required by .Mr. This is of course an approxima-
tion. Note that even after observations are discarded,

no partial assignment to T that was discovered to be
in conflict with the observations will be reconsidered,
as such conflicts are stored. However, if a partial as-

signment to T is in conflict with an observation, but is
not considered until after the observation has been dis-

carded, "imposter" trajectories containing the inconsis-

tent assignment will be admitted. This is a conserva-
tive approximation in that no consistent trajectories are
eliminated. Each imposter trajectory is checked against
new observations and eliminated as soon as it fails to

describe the future evolution of the system.

Selective Model Extension

Ba.no(l tll)C)ttr,h_;._er_;strictions,the procedure extendin-

trodm'es into time ._tep t only tile small fraction of the
model involw_'(l with the evolution of the system due to
the command Cy.t = C'. This hinges upon Theorem 1.

Theorem 1 A._sume C_.t = C', C" _ idle, and for all
x _ y, Cz, = idle. Consider the ,formula of J_7"

(C_.t = C") Arr t A (r_,t = n_ninal) ::¢, Y_+L = Y"

For all state variables _,, x _ y, if xt _ rrt, then an
equivalent consistency problem is ,formed by replacing
x,, r_,t and all,formulae o,f MT-involving these variables
with a constraint between xt-t and xt-t.

Intuitively, J_7- and the assignment to Ct require xt+t
to be a failure or equal to xt-i and prevent zt from
influence any other variables. Use of extend renders the

problem size per time step proportional to I rrt I. Details
appear in the eight-page version of this paper.

Conflict Coverage Search

The strengths of efficiently tracking a partial belief state
are merged with the flexibility of incrementally enumer-
ating belief states in the CoverTrack procedure of Fig-
ure 5. CoverTrack maintains a partial belief state of
all consistent trajectories of rank 7. As a command

and observations are received, trajectories are simply
extended by the nominal, zero rank transition, and lit-

tle computation is required. An extended trajectory
that is inconsistent requires an additional failure, and

will not have rank 7. These are discarded in keeping
with the plausibility interpretation of infinitesimals. If

no trajectories remain, a new belief state consisting of
all trajectories of 7 + 1 is generated, and tracking re-
sumes. CoverTcack uses the extend algorithm to ensure
the transition system is extended by a small number of
variables at each time step. As trajectories are elimi-
nated, the conflicts between partial assignments to 7"
and observations are recorded. The GenerateCover al-

gorithm generates all assignments to T of rank 3' + 1
(or higher if none exist) that cover all known conflicts.

Intuitively, we leave the r_,t at their zero rank values,
introducing reassignment only to avoid conflicts, with
a total cost of 3' + 1. This is the hitting set problem.
Details appear in the eight-page version of this paper.

Finite Horizons

While selective extension reduces the variables per time
step, we still require an unbounded number of variables
over time. Note that members of the belief state of

CoverTrack contain initial transition assignments that
have remained consistent with the system's evolution
for an extended period. We make an additional ap-
proximation by comitting to these partial assignments.
To operate over a fixed time horizon h, the most likely

partial trajectories represented by assignments to r_,t
for 0 < t < (m - h) are summarized by assignments
to a single summary variable. The problem is reduced

procedure Cover Trr_ck()
Confiners = I_; 7 = 0;
V_triablcs = ri0 t.) Do
Assign rio to initial state;
Behe/State = the empty trajectory;
loop

while Belief State is not empty do
Variables= extend(Variables, C,), adding Tt
Assign O_÷t according to observations received;
Assign Tt to nominal, 0 rank assignment.
Survived = _;
while BeliefState is not empty do

Extension = pop(BeliefState) + Tt;
if consistent(Extension) then

push(Extension,Survived);
else

push(conflictinExtension,Conflicts);
endif

endwhile

BeliefState= Survived; report BeliefState;
endwhile

BeliefS tate= Generate Cover(Variables, Conflicts,7);
"_ = Rank(first(BeliefState)) + 1;
endloop

Figure 5: Conflict Coverage Tracking Procedure

to a constant size, wherein the last variable assignment
captures a choice of likely initial trajectories. Details
appear in the eight-page version of the paper.

Results

The algorithms presented have been implemented and
correctly track scenarios translated from Livingstone
that confound partial belief state algorithms. Exam-
ples include silent failures whose impact propagates
forward through time and multiple failure modes that
are indistinguishable without future observations. We
have largely translated Livingstone's spacecraft mod-
els to begin performance analysis. Since Livingstone is
roughly a Lisp implementation of CBFS with observa-
tion and summary horizons of 1, we expect to meet or

exceed its generally high performance at those settings.
Interestingly, increasing correctness by adding variables
to admit failures in the recent past will not uniformly
degrade performance. Removing a particularly critical
failure in a complex Livingstone model has increased
computation by orders of magnitude when the failure
occurred, as not admitting the failure forces considera-
tion of incorrect and potentially expensive hypotheses.
An analysis with large models over a variety of horizons
will appear in a longer version of this paper.

Related Work

The problem described is a partially observable Markov
decision process, or POMDP, with focus placed upon
belief revision. A large body of work exists addressing
belief revision of exact and approximate belief states.
Boyen and Koller (Boyen & Koller 1998), for example,

pr¢_vidv,tit appt'¢J×itlt_tte,f_u't,_r_,,iImlicfst_tt_with a
b,)und_,d _,rror that carl be updated without enumerat-
ing the state space. Intuitively, the error bound relies

upon tile stochasticity of the underlying system, pa-
ramcterized by the problem's mixing rate, to continu-
ally smear both the approximate and true distributions,
exponentially reducing rather than compounding errors
over time. Unfortunately, the systems we consider have

inadequate mixing rates. Intuitively, when monitoring
the internal state of a complex device such asa space
craft, the device may behave as if it were deterministic
for long periods, then exhibit a failure, then return to
apparent determinism. There is no process in place
with sufficient stochasticity to quickly contract an ar-
bitrary error introduced by a factored approximation.

Conclusions

This paper presents incremental belief state genera-
tion as an alternative to belief revision. Application of
the described approximations creates a family of rep-
resentations that track against a full model for a num-
ber of steps, then against a reduced model, then sum-
marize over the most likely initial trajectories. Since
the abstractions of the trajectory segments (full, mini-
mal extension or summary) are represented uniformly,
a single, simple search procedure may be employed.
CoverTrack combines the efficiency of partial belief
state propagation with the flexibilty of the transition
system representation. The system will be evaluated
on Earth-bound testbeds representing an interferome-
ter and a Mars propellant plant. In addition, it will
be flown as an experiment on the X-34 rocket plane in
2001 and the X-37 orbital vehicle in 2002.

References

Bernard, D. E.; Dorais, G. A.; Fry, C.; Jr., E. B. G.;

Kanefsky, B.; Kurien, J.; Millar, W.; Muscettola, N.;
Nayak, P. P.; Pell, B.; Rajan, K.; Rouquette, N.;
Smith, B.; and Williams, B. C. 1998. Design of the
remote agent experiment for spacecraft autonomy. In
IEEE Aerospace.
Boyen, X., and Koller, D. 1998. Tractable inference for
complex stochastic processes. In Proceedings UAI-98.

de Kleer, J., and Williams, B. C. 1989. Diagnosis with
behavioral modes. In Proceedings of IJCAI-8£
Dressier, O., and Struss, P. 1992. Back to defaults:

Characterizing and computing diagnoses as coherent
assumption sets. In ECAI-9_.
Goldszmidt, M., and Pearl, J. 1992. Rank-based sys-
tems: A simple approach to belief revision, belief up-
date, and reasoning about evidence and actions. In
Proceedings of KR-g2, 661-672.
Williams, B. C., and Nayak, P. P. 1996. A model-
based approach to reactive self-configuring systems.
In Proceedings of AAAL96, 971-978.

Williams, B. C., and Nayak, P. P. 1997. A reactive
planner for a model-based executive.In Proceedingsof
IJCAI-97.

